How to Sniff Europa's Hidden Ocean

Sascha Kempf & the SUDA Team

NASA's New Paradigm:

Exploration of Habitable Worlds

Habitability?

Potential Habitability Requires Concurrent Availability of Three Ingredients:

1.Liquid water

2.Source of energy with which to create and maintain complex molecules and structures

3.Raw materials for biosynthesis. Life on Earth requires C, H, N, O, P, and S.

Enceladus

Jovian System

Saturnian System

Europa

Habors a Subsurface Ocean

Galilean Moons

- Io (Size 3643 km)
- Europa (Size 3121 km)
- Ganymede (Size 5262 km)
- Callisto (Size 4820 km)

Europa: Key Parameters

- Radius: 1,561 km
- Escape Speed: 2,040 m/s
- Hill Radius: 13,661 km
- Thickness of Ice Crust:
 - 80 150 km
 Anderson et al., *Science*, 281, 1998
 - Water Pockets at 3 km Schmidt et al., *Nature*, **479**, 2011

Europa's Surface Provides Evidence For Liquid Water

Surface Geology

- Rigdes
- Chaotic
 Terrains
- Pull-apartBands

Surface Composition

- Water ice
- Dark Terrains:
 - Hydrated Sulfate
 Minerals
 - Unknown Compounds
- SO₂
- CO₂
- Organics?

Scaled Reflectance

Dalton et al., 2010

Hydrated Minerals

- Mixtures of
 - MgSO₄ n(H₂O)
 - Na₂SO₄ n(H₂O)
 - $H_2SO_4 n(H_2O)$
- Match the Galileo Spectra (Dalton et al., 2005)
- There is an Element of Ambiguity

There is Even Evidence For A Plume

December 2012 Hubble Observation Versus Atmosphere Plume Model

Roth et al., Science, 343, 2014

Europa Plume

Plume height: ~ 200 km

- Requires initial gas speeds of ~700 m/s
- Europa escape speed is 2040 m/s
- O₂ column density: 10¹⁹m⁻²
- Implies H₂O column of 1.5·10²⁰m⁻²
- Enceladus: 0.90±0.23·10²⁰m⁻² Hansen et al., *GRL*, **38**, 2011

How To Sniff An Subsurface Ocean?

ET

6

Ejecta Clouds

Galileo Dust Detector: Galilean Satellites Wrapped in Dust Clouds

(Krüger et al., Nature, 1999)

Almost Isotropic Clouds Composed of Surface Ejecta

Ejecta Production

Meteoroid Impacts Produce Ejecta

Sremcevic et al., Icarus, 2005 Ganymede Mass Yield ~ 4000

Koschny & Grün, Icarus, 2001; Krivov et al., Icarus, 2003

- Gravitationally Bound Ejecta
 Populate Cloud
- Some Ejecta Escape:
 - Feed Rings
 - Moon Mass Loss
 Mechanism

Ejecta Production @ Work

Ejecta Escaping from Moon's Gravity feed Rings

Burns et al., Science, 1999

Gossamer Rings' extent coincides with moons' orbital extremes

Ejecta Are SUDA's "Photons"

100 µm micrometeoroid impacts generate ~500 kg ejecta/second

Ejecta - "Photons" - Really?

Ejecta Are Pieces From the Surface

Ejecta Move on Ballistic Trajectories

- Meteorite impact splashes up multiple ejecta
- Satellite moves relative to ejecta:
 ∨_i = ∨_e - ∨_{sat} (≈Apex)

Know Starting Position:
 x₀= f(x_i, v_i, Q_d(t_i), t_i,...)

SUrface Dust Analyzer (SUDA)

- Mass Spectrometer:
 - Mass Resolution ~ 200
 - Electrostatic Mirror:
 - Parabolic Grid
 - Ring Electrodes
 - ± Polarity
- Trajectory Sensor:
 - Velocity (1% Uncertainty)

SUDA @ Europa

Water + MgSO₄

Laser–assisted dispersion spectra of MgSO₄ at a concentration of 0.1 ppm in water

SUDA @ Europa

Argenine + Water (Cations)

Laser–assisted dispersion cation spectrum of the amino acid arginine $(C_6H_{14}N_4O_2)$ dissolved in water at a concentration of 10⁻⁴ mol/l.

SUDA Will Collect

Europa Clipper Flybys:

Flyby	Impact Rate	Total Sample #
Europa 25 km	40 per second	5300
Europa 50 km	14 per second	2700
Europa 100 km	5 per second	1350

In total, SUDA will collect about 120 000 samples from Europa's surface

SUDA Composition Map

Dark Lobated Features Thrace & Thera Macula on Europa

MC Simulation for SUDA Compositional Mapping

