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Publication of Chandrayaan-1
M3 [Pieters et al., 2009], Cassini
VIMS [Clark et al. 2009], and
EPOXI HRI-IR [Sunshine et al.,
2009] IR observations of OH/
water content in near-surface of
regolith

Observe an absorption feature
near 2.8 micron in NIR
reflectance spectra

Minimum at warm sub-solar
point [McCord et al., 2011]

Dynamic: H changing on diurnal
timescales
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What are the possible sources of lunar hydroxylation ?
Discussion in McCord et al 2011

1) OH in minerals: evolving view; once viewed as
‘bone dry’ but now find H-rich samples [McCubbin

et al., 2010; Liu et al., 2012]

- Recent M3 analysis indicates mineralogical hydroxyl
concentrations near pyroclastic deposits and in central peak of
larger craters [Klima et al., 2013]

2) Cometary & Meteoric infall: delivery of OH
bearing material
-Is being re-examined given LADEE findings

3) Solar wind implants H atoms into an oxygen-rich

regolith — some of which ‘loiters’ [Pieters et al., 2009;
Clark et al., 2009; Sunshine et al, 2009]
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Solar wind — tenuous ionized gas: Plasma is the 4t State of matter, most mass in universe,
good example: our sun

Protons (H*) and electrons at 5/cm?3 streaming at 400 km/sec, temperature near 100000K
Airless body is a obstacle in this conductive plasma ‘fluid’ flow!
95% H* (few %: He**, O*7 ) incident at surface to implant, sputter, change crystal structure
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H Implantation in ‘Dry’ Oxide- rlch Lunar Regolith
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* Why do some H’s ‘loiter’ in the regolith and some allowed to leave?
 What role does the harsh space environment perform to form OH?
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Starukhina 2001, 2006
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t=h2D_ 1 exp(U/T)

i
|
20|nm1 © O Q o U is activation energy or ‘trapping’

energy related to the inter-atomic
potentials

What is the value of U?
-Complicated question!

“...a wide spectrum of activation energies expects”
-Starukhina, 2006
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Defects and H Diffusion

- Lunar surface is oxide-rich: SiO,, TiO,, FeO,

O .0 .0 O O - Non-thermal population of Defects

O-O O°O o O o O o O.C.)O [Starukhina, 2006; Dyar et al., 2010]
O. O 0O ee oOO O - Vacancies yielding displacements and

O ® O.O O O O..O O O interstitial atoms; Channel defects

O~0~0 OCopOY0o - Exposed grains have rims: amorphous

°eQe_ O O ° O

O -0 20 0o 00,0 crystalline structure — so damaged that

O~ 00 oXe, O O O original crystal destroyed

Fink et al. 1995: Oxygen chemistry of
irradiated silica will ‘hinder’ the migration of H

Damaged crystal created via weathering in the
space environment

-radiation damage (tracks, channel defects)
-impact vaporization & condensation

-solar wind plasma damage (vacancy-
defects) .....Self-fortifying effect

Each H implantation should have its own
unique U depending on its migration history



H Atom Residency Time in Irradiated Silica

(D, = 102 m2/s, h= 20nm)
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Effect of Space Weathering on a Crystal

Newly Exposed Long-Term Exposure
Distribution o
Activation
Energy, F(U) ‘
U U
= h?D_ 1 exp(U/T) Amorphousization of the crystal lattice
e -
Implantations
Log (t) ' \ Log(t)

As move from single value to
broad distribution,
apply a stat mech approach




Monte Carlo H Implantations [2015 Icarus paper]
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After 2015 paper, we said there must be a way to express this statistical approach analytical



Statistical Mechanics of N atoms

Desorption (Barrie, 2008) H-Atom Diffusion
rate: r =1/t=-dO/dt = k® | rate: r = 1/t = D/h?
k — rate constant S| D—diffusion
©® — fractional coverage (N/N,) g h — depth of implantation
<
Arrhenius Eq: k = A exp(-U/T) % Diffusion Eq: D = D, exp(-U/T)
U- surface activation energy [eV] [Starukhina, 2006]
T- temperature [eV] U- volume activation energy [eV]
A- Quantum frequency of bound state T- temperature [eV]

Number of adsorbed molecules at T: Number of implanted Hs at a given T:
N(T) = J,~ f(U,T) duU n(T) = J,~ F(U,T) dU

f(U,T) —number of molecules adsorbed F(U,T) -number of H implantations

with activation energy U ata given T with activation energy U at a given T

Average H diffusion rate:
<r>=n'] =D, h2exp(-U/T) F(U,T) dU

Average desorption rate:
<r>=N1]J A exp(-U/T) f(U,T) dU

san|obA n Jo uonnqliisig




Application 1: Surficial H content in Dynamic
Equilibrium

Continuity (Fick’s law) equation with sqar wind source at solar zenith angle, Z

dnp/dt = nsw vswCos(Z)/h - <Dnyp>/h?

< > = Average value of quantity integrated
over the spread in activation energy values

Doh2 [ " e~Y/T F(U,T) dU = nsw vsw Cos(Z) /h

Now consider a general form of a shifted-Gaussian to describe the
distribution of activated states with unknown n,

F(U,T) = Au’jjt_ exp (-(U-U,)2/AU?)

Equilibrium H content as a function of the distribution of solar wind influx,
activation energy, diffusion, and temperature - not necessarily in saturation!!

For time-stationary equilibrium, source equals loss:

nH = Nsw Vsw Cos(Z) h Dy 1 exp (U,/T) exp(-AU?/(4T%))

Closed analytical form for H content in layer h
What are D, U, AU values to use?




Hydrogen implantation and diffusion in silicon and silicon dioxide
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H® in vitreous silica Irradiated Silica (Fink et al., 1995)
‘Hindered H diffusion’
H, in vitreous silica

Irradiated O have a relatively
stronger bond with passing H

D A in vitreous silica

H* in vitreous silica

D, ~ 1012 m?/s
U, =0.52 eV
AU = +/-0.15 eV

OH in fused silica
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Solar W|nd Implanted H Mass Fractlon
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Nominal Lunar Regions

A =100% with U_=0.5 eV
B=97% w 0.5eV; 3% w 0.7 eV
C=90% w 0.5eV; 10% w 0.7 eV

Dynamlc H Mass Fraction in.

1

Fink et al with added
‘chemisorbed-like’

states from Poston
2015 lab work on
mature highla

1

al

/ - ppm
A Fink et al case

Log of H Mass Fraction
" W
T1 nun[—r"rrrrmr—rwnmmu[—rrnmr[—r"nmm

-9 e e e l

1

20 40
Solar Zenith Angle

o

Fink-like Diffusion Parameters

D, ~ 1012 m?%/s

U,=0.5eV (and U,=0.7 eV)

AU=0.1eV

T =280 cos®25(Z) +100 (Crider and Vondrak, 2000)

80

Results:

-Diurnal effect

-H content substantial

-H content is not saturated!!!

-If applied non-irradiated silica, H
content would be substantially
lower (self-fortifying effect)



Application #2: Reduced 2.8 micron IR OH signal
from Mag Anomalies [Kramer et al 2011]

M3 - 2.8 micron Reiner Gamma

Lack of OH albrflg thq
. edge of swirll Wiy ‘
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Dark = less OH
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Flanks of mag anomaly appears to
have less implanted H - where large
tangential B




SW inflow at Magnetic Anomalies

Simulation of plasma inflow at magnetjg anomaly
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Zimmerman et al., 2015: Development of ambipolar E-fields along flanks
1) Reflectsions

2) Reduces ion flux to surface
3) Lowers ion energy to as low as 0.2 keV — what few ions get to surface are less potent
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Low energy implantations stop at a depth much closer to surface

TRansport of lons in Material (TRIM)
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Monte Carlo Diffusion Code [used in our 2015 Icarus paper]
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Dynamic H Mass Fraction in
Regolith in Mag Anomaly

A =100% with U_=0.5 eV
B=97% w 0.5eV; 3% w 0.7 eV
C=90% w 0.5eV; 10% w 0.7 eV

Mass Fraction

20 a0 80 80
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For exact same
Fink-like
diffusion,
obtain factor
of ~50 less H
atom
retention in
magnetic
anomaly



Conclusion

Statistical mechanics-based formalism

An interesting solid state problem — follow-up of L. Starukhina
Given F(U), can define H retention profile (and inverse also)
Volumetric solar wind H content in dynamic equilibrium

Model predicts: Less H atom retention in magnetic anomalies
(fewer SW ion implantations at shallower depths)

Continuing the logic: Should we thus expect the grain rims
from mag anomalies to have a different character (shallower
depth < 10 nm, less amorphous) compared to Apollo samples?
Are they inherently less retentive of volatiles because of less
SW damage?

Solar Wind

grain
(anorthite)

Slow Di




