

Dust is abundant in the solar system

Student Dust Counter (SDC) operating in the outer solar system

Depolarization dust detector

Dust *mass* obtained from signal amplitude using the calibration relation

 $N_e = 5.63 \times 10^{17} m[g]^{1.3} v[km/s]^{3.0}$

The LADEE mission and LDEX

LADEE = Lunar Atmosphere and **D**ust Environment Explorer

LDEX = **L**unar **D**ust **EX**periment (LDEX)

Operation: 2013-2014

Orbit: ~50x200 km elliptical orbit, 100 days of operation

Instruments currently in development

NDA/DANTE

SUDA
Selected for flight
(approx. 2022)

Hyperdust
Proposed for
asteroid missions
(with DTS)

NDA/DANTE
Proposed for inner solar system dust investigations

ENIJAProposed for
Enceladus mission

Common theme: Compositional analysis

Instrument concepts developed at: LASP/University of Colorado and MPI-K/Heidelberg (now University of Stuttgart)

In-situ detection/analysis principle - Impact Ionization

Measureable parameters:

- Velocity
- Mass
- Ion composition

CDA made important science contributions to the Cassini mission

CDA on Cassini M/dM ~ 20-30

- Pronounced signatures of sodium and potassium salts in a water matrix
- NaCl, KCl, NaHCO3 are identified.
- Important implications for subsurface water reservoir (Postberg et al., Nature 2009)

Hyperdust improvement over CDA

From M/dM ~ 30 (CDA)
To
M/dM ~ 200 (IDEX)

Key Hyperdust requirements/features

Requirement	Justification
Effective target area: ≥ 600 cm ²	To detect a statistically significant number of interplanetary and/or interstellar particles (interstellar dust flux on the order of 10 ⁻⁵ m ⁻² s ⁻¹)
Mass resolution m/dm ≥ 200	To analyze the elemental/chemical/isotopic composition of ISDs
Dual polarity	To extend the chemical analysis capabilities by measuring both cation/anion TOF spectra (optional)
Ion detector dynamic range ≥ 10 ⁶	To measure the TOF mass spectrum over a wide impact velocity and mass ranges
Dust charge sensitivity ≤ 150 e ⁻ rms noise	To measure the velocity vector of interstellar particles (submicron in size)
Low mass	Large size instrument requires composite structure

Hyperdust functionality

Hyperdust ion optics is optimized through numerical simulations

- Incoming dust particle
 - Size: ~1 μm
 - Speed: 1 70 km/s
- Energy goes to
 - Deforming target material
 - Heating
 - Breaking chemical bonds
 - Ionization

Time of flight of ions:

$$t(r_i, m) = b(r_i)\sqrt{m}$$

Mass resolution:

$$\frac{m}{\Delta m} = \frac{t}{2\Delta t}$$

Hyperdust mechanical design

Hyperdust mechanical design – cont.

High dynamic range ion detector

- Custom made focused mesh electron multipliers
- Modeled after the MM1 detector (Johnston Tech), CDA heritage
- Existing functional TRL 6 prototype

Detector tapped at different stages provides high dynamic range

ASIC CSA development for DTS

- ASIC = Application Specific Integrated Circuit
- CSA = Charge Sensitive Amplifier
- 64 parallel channels
- Charge on 1 micron radius dust at 5 V surface potential: 3500 electrons
- < 150 e⁻ rms noise requirements (10 kHz 10 MHz bandwidth)
- Older tested ASIC performs with < 250 e⁻ rms noise
- New ASIC with 0.18 micron technology designed to 150 e⁻ rms noise
- New ASIC currently in fabrication (done by Nov 2016)

Enabled science – variation with impact velocity

Impact velocity	Science capability
> 1.0 km/s	Impact detection – characterization of ejecta distribution (mass, density, dynamics)
> 1.5 km/s	Identification of basic compositional types (e.g., ice, rocky, metallic, organic)
> 3.0 km/s	Basic compositional analysis – distinguishing between different sub-types based on low-ionization potential species
> 3.0 km/s	Detailed compositional analysis of <u>icy</u> particles – identification of even minor components embedded in the ice matrix
5 – 15 km/s	Detailed compositional analysis* – full range of molecular fragments identified in impact ionization mass spectra
> 15 km/s	Elemental composition – easy to interpret, relevant to interstellar and interplanetary particle

^{*} For best science results it requires a comprehensive laboratory calibration campaign using analogue dust particles. Postberg, personal comm.