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Abstract. Without a significant atmosphere or global magnetic field, the lunar surface is 
exposed to micrometeoroid bombardment, ultraviolet (UV) radiation, and the solar wind. 
Micrometeoroid bombardment grinds the surface into a regolith comprised of dust grains 
ranging in size from 10 nm to 1 mm.1 Incident UV radiation and solar wind particles 
electrically charge the surface forming a plasma sheath whose structure is dependent on 
the plasma and surface properties.2,3,4,5 Furthermore, dust grains that are liberated from 
the surface can collect additional charge and interact with the plasma sheath. These 
interactions have been suggested to explain a variety of phenomena observed on airless 
bodies including horizon glow and dust ponding. 6,7,8,9 The effect of surface topography 
on the plasma environment and ensuing dust dynamics is poorly understood and serves as 
the focus of this paper. We present the results of a three-dimensional particle-in-cell 
(PIC) code used to model the dayside near-surface lunar plasma environment at a variety 
of solar zenith angles (SZA) in the presence of two topographies. Using the results of the 
PIC code, we model the effects on dust dynamics and bulk transport.  
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