SLAM: synthetic lunar atmosphere mission

M. Piquette,^{1,3} M. Horányi,^{2,3} A. Stern⁴

¹ Astrophysical and Planetary Science Dept., University of Colorado, Boulder CO 80309 ² Physics Dept., University of Colorado, Boulder, CO 80309 ³ LASP, University of Colorado, Boulder CO 80303 ⁴ Southwest Research Institute, Boulder CO 80302 Marcus.Piquette@Colorado.edu

Abstract: Tenuous exospheres, such as the Moon's, are among the most common planetary atmospheres found in the solar system¹. The Synthetic Lunar Atmosphere Mission (SLAM) is a concept to explore the behavior of the lunar surface boundary exosphere in response to a comet-like impact. The concept of SLAM consists of using the Atlas V launch vehicle to send a large payload of H₂O or other volatiles on a low-energy Hohman transfer orbit, which will impact the lunar surface. The resulting impact and volatile transport can then be observed via earth-bound and orbiting observatories. Furthermore, SLAM may provide the means for low-cost water resupply to a lunar outpost by harvesting water from the impact site. I present here the architecture needed to observe such an event, as well as initial experiments to assess the efficacy of using SLAM as water resupply technique for a lunar outpost. The experiments include impact studies about vaporization yields upon impact, as well as sublimation rates of water embedded in the lunar regolith.