Evidence for lunar true polar wander, and a past loweccentricity, synchronous lunar orbit

James Tuttle Keane¹ & Isamu Matsuyama¹

¹Department of Planetary Science, University of Arizona, Tucson, AZ 85721 Contact: jkeane@lpl.arizona.edu

Abstract. For nearly 200 years, the nature of the Moon's shape has remained a mystery. The observed lunar figure is significantly more deformed than it should be, given its present orbital and rotational state¹. This excess deformation has long been ascribed to a "fossil figure," frozen into place when the Moon was much closer to the Earth^{2,3,4}. However, the observed figure requires an initially large eccentricity or non-synchronous spin-orbit state^{5,6}, which seem at odds with our understanding of the Moon's formation and evolution. In this work, we use GRAIL gravity data⁷ to investigate whether lunar impact basins and mascons have any contribution to the observed figure. We find that the South Pole-Aitken (SPA) basin and its associated global ejecta blanket account for a significant fraction of the observed lunar figure, while most other impact basins and mascons are negligible. Removing the contribution from SPA reveals a fossil figure that is misaligned with respect to the present-day rotational and tidal principal axes suggesting a past episode of lunar true polar wander driven by the formation of SPA. Correcting for this reorientation reveals a lunar figure consistent with the Moon forming in a low-eccentricity, synchronous orbit. Constraining these past orbital and rotational states is important for improving our understanding of the formation, dynamical evolution of the Moon.

¹ Laplace, P.-S. *Oeuvres comptetes de Laplace*. (Gauthiers-Villars, 1878).

² Sedgwick, W. F. On the oscillations of a heterogeneous compressible liquid sphere and the genesis of the Moon; and the figure of the Moon. *Messenger Math.* **27**, 159-173 (1898).

³ Jeffreys, H. Certain hypothesis as to the internal structure of the Earth and Moon. *Mem. R. Astron. Soc.* **60**, 187-217 (1914).

⁴ Lambeck, K. & Pullan, S. The lunar fossil bulge hypothesis revisited. *Phys. Earth Planet. Interiors* **22**, 29-35 (1980).

⁵ Garrick-Bethell, I. Wisdom, J. & Zuber, M. T. Evidence for a past high-eccentricity lunar orbit. *Science* **313**, 652-655 (2006).

⁶ Matsuyama, I. Fossil figure contribution to the lunar figure. *Icarus* **222**, 411-414 (2013).

⁷ Zuber, M. T. et al. Gravity field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) mission. *Science* **339**, 668-671 (2013).