Laboratory experiment of the solar wind interaction with magnetic dipole fields on the lunar surface

J. Han^{1,3}, L. Yeo^{1,3}, Z. Ulibarri^{1,3}, X. Wang^{2,3}, T. Munsat^{1,3}, M. Horányi^{1,2,3}

¹Department of Physics,

²Laboratory for Atmospheric and Space Physics,

³NASA SSERVI's Institute for Modeling Plasma, Atmospheres and Cosmic Dust, University of Colorado - Boulder

> The DAP Workshop Jan. 11-13, 2017

Lunar Magnetic Anomalies

Surface magnetic fields by Lunar Prospector Electron Reflectometer (from wikipedia).

- Unlike Earth, the Moon has no global magnetic field.
- Crustal magnetic fields called "Lunar magnetic anomalies" are all over the surface.
- Magnetic field strength varies from tenth to hundreds nanoTesla.

Solar Wind Interaction with Magnetic Anomalies

Solar wind ions are mainly reflected/deflected by electric fields created due to charge separation while electrons are magnetically reflected/deflected.

Deca and Divin, 2016

Bamford et al., 2012 $_{3}$

Surface electric environment in magnetic anomaly regions

Significance

- Space weathering: How large are the energies of ions that bombard the surface in these regions?
- Electrostatic dust transport: How does dust get redistributed by the electric fields created in these regions?

A Basic Picture

Observations and Simulations

Futaana et al., 2013

Zimmerman et al., 2015

Laboratory Studies

Non-flowing plasma

Flowing plasma (50 eV ions)

Wang et al., 2013

Howes et al., 2015

New Experiment with Laboratory Simulated Solar Wind

The Colorado Solar Wind Experiment (CSWE)

Experimental setup and parameters

Parameter	Laboratory	Lunar case (Strong B region)
lon species	N ₂ ⁺	H+
Ion flow energy E _b (eV)	100 - 800	1000
Electron Temperature T _e (eV)	0.5 (cold), 10 (hot)	10
Ion Temperature T _i (eV)	14	10
Ion Mach number M	11	9
Electron gyro ratio (r _e / L)	< 1 (0.3 cm / 2 cm)	<< 1 (0.35 km / 30 km)
lon gyro ratio (r _i / L)	>> 1 (250 – 720 cm / 2 cm)	> 1 (150 km / 30 km)
Electron Debye ratio (🕅 _{De} / L)	< 1 (0.2 cm / 2 cm)	<< 1 (0.01 km / 30 km)
Ion Debye ratio (🕅 _{Di} / L)	<1 to > 1 (1.4 - 6.5 cm / 2 cm)	<< 1 (0.1 km / 30 km)

* The magnetic field strength 30 nT at 30 km altitude is used for the lunar case with strong magnetic anomalies [*Hood et al.*, 2001].

- 216.4

185.8

- 155.1

- 124.5

- 93.88

63.25

- 32.63

- 2.000

Surface potential in the electron shielded region vs. ion energy

Question:

Why does the surface potential in the electron shielded region stop following the ion energy after 200 eV?

Possible explanation: Electron dynamics are changed by large electric fields extended across the magnetic field region.

Preliminary Analysis to compare Electric force vs Lorentz force

Ratio of the electric force to Lorentz force

Force ratio much larger than 1 for the 400eV and 800eV ion energies

Force ratio around 1

Potential profiles for the 400 eV ion energy with different currents

Next To Do:

- Test particle simulation for the electron dynamics in response to the electric fields.
- Electron density measurement with a Langmuir probe.
- Examine any secondary electrons induced by the ions.

Thank you