The Dust Environment of the Moon

J.R. Szalay *with contributions from* M. Horányi, M. Sarantos, D. Janches, P. Pokorny, S. Kempf, E. Gruen, Z. Sternovsky, J. Schmidt, R. Srama

http://www.britannica.com/topic/Comet-Hale-Bopp

the second

.....

...

Meteor Showers

Sporadic Meteoroids

Meteoroid Sources

Barensten and Lefevre, 2006

Jones and Brown, 1993

Sporadic Meteoroid Sources

Waveforms

Horányi et al., SSR, 2014

The Lunar Dust Exosphere

Impact Rate

Horányi et al., Nature, 2015

DE

Horányi et al., Nature, 2015

Sporadic Meteoroids

Annual Variation

Szalay and Horányi, GRL, 2015a

Annual Variation of HE/AH sources from LDEX Data

Szalay and Horányi, GRL, 2015a

Structure of the Lunar Dust Cloud

High Altitude Densities

DE

Szalay and Horányi, GRL, 2016a

Density [norm.]

Local Time Asymmetry

Velocity Distribution Function

Szalay and Horányi, GRL, 2016a

Impact Gardening

Swirls

Polar Regions

NASA GSFC 0° E 330° I 90° E 180° E Siegler, Miller, Keane, et al., (2016)

Instrumentation

Impact Gardening

Szalay and Horányi, GRL, 2016a

Meteor Showers at the Moon

dispate

Bursts

Szalay and Horányi, Icarus, 2016b

Dust Density [10⁻³ m⁻³]

Geminids

Future missions to airless bodies can characterize their local meteoroid environments with dust analyzers.

Probing the Structure of the Geminids

Geminids Local Time Dependence

Meteoritic Influence on Exospheric Neutrals

Szalay et al., GRL, 2016c

Synodic Dependence

Szalay et al., GRL, 2016c

Removing Synodic Trends

Szalay et al., GRL, 2016c

Neutral Generation due to Meteoroid Bombardment

Szalay et al., GRL, 2016c

Surface Potassium

Colaprete et al., Science, 2016; Szalay et al., GRL, 2016c

Ejecta Clouds at Near Earth Asteroids

NEA Dust Distribution

Asteroidal Dust Cloud Size

Szalay and Horányi, ApJ Lett., 2016d

Asteroidal Flyby Geometry

Future asteroid missions with dust analyzers would best characterize the ejecta by transiting the apex hemisphere.

Szalay and Horányi, ApJ Lett., 2016d

The Search for Electrostatically Lofted Dust

Sketch by G. Cernan

DE

Example Orbits

Szalay and Horányi, GRL, 2015b

Estimates taken from McCoy, 1976; Glenar *et al.*, 2011; Glenar *et al.*, 2014; Feldman *et al.*, 2014

Szalay and Horányi, GRL, 2015b

Dayside Current

LDEX measurements constrain pickup ion scale height and abundance ratios.

Outlook

Impact Yield Studies

Geminids as a probe

Surface Dependence

Modeling Ejecta Plumes

Ejecta Rates from Regolith Bodies in the Solar System

Conclusions

- Lunar dust cloud is sensitive to changes in impactor flux.
- A fit for the entire equatorial lunar dust density distribution is derived.
- No evidence for electrostatically lofted dust from h = 3-250 km.
- Similar processes take place on all airless bodies in the solar system.

Meteor Showers

Impact Rate [min-1]

2DE>