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Introduction

Triboelectricity is the phenomenon by which surfaces exchange charge due to
collisions or contact

=  QOccurs in nearly all materials
=  Mechanism depends on environment and material properties
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Charge separation by particle size in
regolith simulant (Forward, et al,
2009)

Trigwell, et al (2013), used
tribocharging to electrostatically
filter regolith samples

Determined feasible, but some
questions about the process remain
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Same-Material Tribocharging

Tribocharging between identical granular
materials is poorly understood

=  Polarity follows size-dependent
patterns (Forward, et al, 2009)

L Mechanism is unclear

=  Atmosphere appears to have a
significant effect
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Lacks and Levandovsky developed a

model for insulator tribocharging in

bidisperse mixtures

= Excited electrons cannot reach
lower energy states

=  Predicts negative charge for small
grains, positive for large grains
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Motivation

Presence of water vapor in air significantly alters the

tribocharging process
= Testing in vacuum will be necessary to understand
regolith charging in situ

Knowledge gap in same-material dielectric

tribocharging makes accurate models elusive

= Better models will have broad implications in fields of
lunar ISRU, dust mitigation, and earth sciences

" |mproving our understanding of this phenomenon is a
critical first step
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Collision Model

Assume grains move with Container
constant speed against a /;v—er;md"me- Ve

uniform background QT/V/.J
: : : :

Mixture contains n, grains
= Sizes distributed as g(R)dR

= Collision rate of grain with @
radius R; against grains of
radius R; calculated as: @

vrnog(R;)
Ve
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= Relevant parameters:
P0 (Initial electron density)

fH (Transfer probability)
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(Exchange rate coefficient)
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Transfer Rates

= High-energy electron density:

= | ow-energy electron density:

dt dR; dt

= Charge rate:
dQ, _deR2 Aoy n dpLij

dt dt dt
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Charging Model

Collision area estimated - R,?Rf
from Hertzian collision U — a~2/5 G
theory (Gugan, 2000): (Ri T RJ) (Ri + R;)

For single-material mixtures, integrating over collisions
with all grain sizes gives average charge on a grain of some
size R; below:

Q(R;) OCR,? —/ RJQ- — (£ + 3)2 i9(R;)
L Jo (Rj + Ri)” Ajrg(Ry)dRy
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Results and Predictions

For normally distributed sizes:
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Polarity Variation

Charge polarity varies with width of size distribution
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Polarity Variation

Size and mass ratios determine reversal conditions
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Designing experiment to
measure individual grain

charge

= Grains shaken in vacuum to
induce charge separation

=  Dropped through transverse E-
field

=  High-speed camera records
grain trajectory to measure
charge

= See similar experiment by
Jaeger and Waitukaitis, et al,
2014
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Experiment

Grain Charging Experiment
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Grain Tracking

Developed preliminary
grain tracking algorithm

Sample taken at 1k fps
over 10 frames

143 tracks with various
degrees of accuracy

Needs refinement for
final setup
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Future Work

Model for same-material tribocharging can be integrated
into existing models for different-material charging

= Monte Carlo simulations of granular mechanics incorporating
our charge exchange model can illuminate charging trends in
lunar regolith

Construction of experimental setup is underway

= Results will allow further refinement of our charging model

Currently awaiting results of small-scale vacuum
tribocharging test
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Conclusions

We know that significant, predictable charge
separation occurs in lunar regolith

Our model makes new testable predictions about
charge polarity in vacuum conditions

Our experiment will enable better modeling and
prediction of grain charge by size and mixture
properties in a variety of granular systems

Predictive models have potential applications in
lunar ISRU and dust mitigation techniques
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