

A Comparison of Solar Wind Hydroxylation within and outside Lunar Magnetic Anomalies

N RESEARCH

W. M. Farrell¹, D. M. Hurley², V. J. Esposito³, J. L. McLain⁴, M. I. Zimmerman²

1. NASA/Goddard Space Flight Center, Greenbelt MD; 2. Johns Hopkins University/Applied Physics Laboratory, Laurel MD; 3. NASA Goddard Summer Intern and U. South Carolina; 4. University of Maryland, College Park, MD.

bsorption

2009 – The Discovery of an OH Veneer

Pieters et al [2009] Continuum Removed Reflectance 0.96 Clark et al [2009 0.94 0.92 0.90 M) Mare Imbrium Morning 0.88 Mare Imbrium Noon Humboldtianum Afternoo 0.86 2.8 3.4 Wavelength (µm)

Publication of Chandrayaan-1 M³ [Pieters et al., 2009], Cassini VIMS [Clark et al. 2009], and EPOXI HRI-IR [Sunshine et al., 2009] IR observations of OH/ water content in near-surface of regolith

- Observe an absorption feature near 2.8 micron in NIR reflectance spectra
- Minimum at warm sub-solar point [McCord et al., 2011]
- Dynamic: H changing on diurnal timescales

Sunshine et al [2009]

What are the possible sources of lunar hydroxylation ? Discussion in McCord et al 2011

1) OH in minerals: evolving view; once viewed as 'bone dry' but now find H-rich samples [McCubbin et al., 2010; Liu et al., 2012]

- Recent M³ analysis indicates mineralogical hydroxyl concentrations near pyroclastic deposits and in central peak of larger craters [Klima et al., 2013]

2) Cometary & Meteoric infall: delivery of OH bearing material

-Is being re-examined given LADEE findings

3) Solar wind implants H atoms into an oxygen-rich regolith – some of which 'loiters' [Pieters et al., 2009; Clark et al., 2009; Sunshine et al, 2009]

The Prime Suspect: Solar Wind [McCord et al, 2011]

- Solar wind tenuous ionized gas: Plasma is the 4th State of matter, most mass in universe, good example: our sun
- Protons (H⁺) and electrons at 5/cm³ streaming at 400 km/sec, temperature near 100000K
- Airless body is a obstacle in this conductive plasma 'fluid' flow!

RATION RESEARCH

• 95% H⁺ (few %: He⁺⁺, O⁺⁷) incident at surface to implant, sputter, change crystal structure

H Implantation in 'Dry' Oxide-rich Lunar Regolith

- Why do some H's 'loiter' in the regolith and some allowed to leave?
- What role does the harsh space environment perform to form OH?

(a)

20 nm-

Atom-Atom Interaction H Residency 'Loitering' time:

ATION RESEARCH

 $\tau = h^2 D_o^{-1} \exp(U/T)$

U is activation energy or 'trapping' energy related to **the inter-atomic potentials**

What is the value of U? -Complicated question!

"...a wide spectrum of activation energies expects" -Starukhina, 2006

Starukhina 2001, 2006

Defects and H Diffusion

(a)

Starukhina 2006

- Lunar surface is oxide-rich: SiO₂, TiO₂, FeO₂
- Non-thermal population of Defects [Starukhina, 2006; Dyar et al., 2010]
- Vacancies yielding displacements and interstitial atoms; Channel defects
- Exposed grains have rims: amorphous crystalline structure – so damaged that original crystal destroyed
- Fink et al. 1995: Oxygen chemistry of irradiated silica will 'hinder' the migration of H

Damaged crystal created via weathering in the space environment

-radiation damage (tracks, channel defects) -impact vaporization & condensation

-solar wind plasma damage (vacancydefects)Self-fortifying effect

Each H implantation should have its own unique U depending on its migration history

H Atom Residency Time in Irradiated Silica (D_o = 10⁻¹² m²/s, h= 20nm)

Effect of Space Weathering on a Crystal

Monte Carlo H Implantations [2015 Icarus paper]

After 2015 paper, we said there must be a way to express this statistical approach analytical

SOLAR SYSTEM EXPLORATION RESEARCH

Statistical Mechanics of N atoms

Desorption (Barrie, 2008)		
rate: $r = 1/t = -d\Theta/dt = k\Theta$	6	rate
k – rate constant	sing	D – c
Θ – fractional coverage (N/N _o)	le L	h – 0
Arrhenius Eq: k = A exp(-U/T)	alu	Diffu
U- surface activation energy [eV]	10	[Star
T- temperature [eV]		U- vo
A- Quantum frequency of bound state		T- te
	D	
Number of adsorbed molecules at T:	istr	Num
$N(T) = \int_0^\infty f(U,T) dU$	ibu	
f(U,T) –number of molecules adsorbed	tion	F(U,
with activation energy U at a given T	l of	with
	C v	
Average desorption rate:	alu	Aver
< r > =N⁻¹ ∫₀ [∞] A exp(-U/T) f(U,T) dU	S	< r >

H-Atom Diffusion

rate: $r = 1/t = D/h^2$ D - diffusion h - depth of implantation Diffusion Eq: D = D_o exp(-U/T)

[Starukhina, 2006] U- volume activation energy [eV] T- temperature [eV]

Number of implanted Hs at a given T: $n(T) = \int_0^\infty F(U,T) dU$ F(U,T) –number of H implantations with activation energy U at a given T

Average H diffusion rate: < r > =n⁻¹ $\int_0^\infty D_o h^{-2} exp(-U/T) F(U,T) dU$

Application 1: Surficial H content in Dynamic

Equilibrium

Continuity (Fick's law) equation with solar wind source at solar zenith angle, Z

$dn_H/dt = n_{sw} v_{sw} Cos(Z)/h - \langle Dn_H \rangle/h^2$

For time-stationary equilibrium, source equals loss: < > = Average value of quantity integrated
over the spread in activation energy values

$D_o h^{-2} \int_0^\infty e^{-U/T} F(U,T) \, dU = n_{sw} v_{sw} Cos(Z)/h$

Now consider a general form of a shifted-Gaussian to describe the distribution of activated states with unknown n_{H}

$F(U,T) = \frac{n_H}{\Delta U \sqrt{\pi}} \exp\left(-(U - U_o)^2 / \Delta U^2\right)$

Equilibrium H content as a function of the distribution of solar wind influx, activation energy, diffusion, and temperature - not necessarily in saturation!!

$n_H = n_{sw} v_{sw} Cos(Z) h D_o^{-1} exp (U_o/T) exp(-\Delta U^2/(4T^2))$

Closed analytical form for H content in layer h What are D_{o} , U_{o} , ΔU values to use?

Hydrogen implantation and diffusion in silicon and silicon dioxide

D. Fink¹, J. Krauser¹, D. Nagengast¹, T. Almeida Murphy¹, J. Erxmeier¹, L. Palmetshofer², D. Bräunig¹, A. Weidinger¹

¹Departments FD. AT, and FH of the Hann-Meitner-Institute Berlin, Glienicker Strasse 100, D-14109 Berlin, Germany (Fax: + 49-30/8062-2293) ²Institute for Experimental Physics. I. Kopler University. A 4040 Linz. Austria

²Institute for Experimental Physics, J. Kepler University, A-4040 Linz, Austria

Application #2: Reduced 2.8 micron IR OH signal from Mag Anomalies [Kramer et al 2011]

M³ - 2.8 micron Reiner Gamma

Flanks of mag anomaly appears to have less implanted H – where large tangential B

SW inflow at Magnetic Anomalies

Zimmerman et al., 2015: Development of ambipolar E-fields along flanks

- 1) Reflects ions
- 2) Reduces ion flux to surface
- 3) Lowers ion energy to as low as 0.2 keV what few ions get to surface are less potent

TRansport of Ions in Material (TRIM) Code Results

Low energy implantations stop at a depth much closer to surface

Monte Carlo Diffusion Code [used in our 2015 Icarus paper]

Conclusion

- Statistical mechanics-based formalism
- An interesting solid state problem follow-up of L. Starukhina
- Given F(U), can define H retention profile (and inverse also)
- Volumetric solar wind H content in dynamic equilibrium
- Model predicts: Less H atom retention in magnetic anomalies (fewer SW ion implantations at shallower depths)
- Continuing the logic: Should we thus expect the grain rims from mag anomalies to have a different character (shallower depth < 10 nm, less amorphous) compared to Apollo samples? Are they inherently less retentive of volatiles because of less SW damage?

